organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lakshminarasimhan Damodharan,^a B. Syed Ibrahim,^a Vasantha Pattabhi,^a* Somnath Halder^b and Sambasivarao Kotha^b

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India

Correspondence e-mail: pvasantha@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.067 wR factor = 0.179 Data-to-parameter ratio = 20.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

anti-2,19-Diethoxycarbonyl-2,19-diformyl-amino[3.2.3.2]paracyclophane

The title compound, $C_{42}H_{46}N_2O_6$, crystallizes with half a molecule in the asymmetric unit, the molecule being centrosymmetric. The ethyl ester and *N*-formyl side chains attached to the C_{α} atom of the molecule adopt a *trans* and *cis* configuration, respectively. The crystal structure is stabilized by $C-H\cdots O$, $N-H\cdots O$ and $C-H\cdots \pi$ interactions and herring-bone-type packing is observed.

Comment

Macrocyclic molecules act as synthetic receptors in molecular recognition (Keehn & Rosenfeld, 1983). Incorporation of the unusual amino acid Aib (α -aminoisobutyric acid) with a paracyclophane unit resulted in the title compound, (I) (Kotha *et al.*, 2002). This synthesis yielded a mixture of isomers. The crystal structure of the *trans* isomer, (I), is

reported here. The compound crystallized from a mixture of CH_2Cl_2 and petroleum ether in space group *Pbca*, with one

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of the title molecule with 50% probability displacement ellipsoids and the atomic numbering scheme.

Received 7 August 2002 Accepted 27 August 2002 Online 31 August 2002

Mo $K\alpha$ radiation Cell parameters from 4538

reflections $\theta = 1.9 - 28.0^{\circ}$ $\mu=0.08~\mathrm{mm}^{-1}$ T = 293 (2) KRectangular, colourless $0.54 \times 0.45 \times 0.45$ mm

 $R_{\rm int} = 0.032$ $\theta_{\rm max} = 28.0^\circ$ $h = -20 \rightarrow 20$ $k = -12 \rightarrow 14$ $l = -27 \rightarrow 27$

Figure 2

Stereoview of the herring-bone-type packing of the molecules in the ac plane.

Figure 3

Stereoview of the molecule of (I), showing the $N-H \cdots O$, $C-H \cdots O$ and $C-H\cdots\pi$ interactions. For clarity, only H atoms involved in hydrogen bonding are shown.

half molecule in the asymmetric unit, the molecules lying on inversion centres.

An ORTEP-3 diagram (Farrugia, 1997) of (I) is shown in Fig. 1. The conformation of the ethyl acetate side chain is *trans* $[C1-C19-O20-C20 = 176.4 (2)^{\circ}]$, while that of the Nformyl side chain is *cis* $[C1-N1-C18-O18 = 1.0 (4)^{\circ}]$ with respect to the C_{α} atom.

One half of the molecule is linked to the other half through a pair of transannular N-H···O hydrogen bonds. Herringbone-type of packing is stabilized by van der Waals forces, and by C-H···O and C-H··· π -type intermolecular interactions (Figs. 2 and 3).

Experimental

The title unusual macrocyclic cyclophane-based α -amino acid derivative has been synthesized by coupling of ethyl isocyanoacetate with 1,2-bis(4-bromomethylphenyl)ethane under phase-tranfer-catalysis conditions.

Crystal data

$C_{42}H_{46}N_2O_6$
$M_r = 674.81$
Orthorhombic, Pbca
a = 15.890 (2) Å
b = 11.2944 (16) Å
c = 21.125 (3) Å
V = 3791.1 (9) Å ³
Z = 4
$D_{\rm x} = 1.182 {\rm Mg m}^{-3}$

Data collection

Bruker CCD area detector
diffractometer
φ and ω scans
31 175 measured reflections
4538 independent reflections
3019 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0764P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.067$	+ 0.7790P]
$wR(F^2) = 0.179$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
4538 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

Cg2 is the centroid	of [please	provide	ring/plane	details]
---------------------	------------	---------	------------	----------

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O19^{i}$	0.86	2.14	2.9272 (19)	151
$C21 - H21A \cdot \cdot \cdot O18^{ii}$	0.96	2.42	3.317 (4)	155
$C5-H5\cdots Cg2^{iii}$	0.93	3.07	3.921 (1)	153
Symmetry codes: (i) $-x$,	-y, 1-z; (ii)	$x - \frac{1}{2}, \frac{1}{2} - y, 1$	-z; (iii) $2-x, -y$, <i>-z</i> .

The H atoms were fixed geometrically at idealized positions and refined as riding on the heavier atoms to which they were bonded.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The work was supported by Council of Scientific and Industrial Research, India, and the DST.

References

- Bruker (1999). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT. Version 6.029. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Keehn, P. M. & Rosenfeld, S. M. (1983). Cyclophanes, Vol. 1 and 2. New York: Academic Press.
- Kotha, S., Halder, S., Damodharan, L. & Pattabhi, V. (2002) Bioorg. Med. Chem. Lett. 12, 1113-1115.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.